Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Cell Commun Signal ; 22(1): 203, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566182

RESUMO

BACKGROUND: The metabolically demanding nature of immune response requires nutrients to be preferentially directed towards the immune system at the expense of peripheral tissues. We study the mechanisms by which this metabolic reprograming occurs using the parasitoid infection of Drosophila larvae. To overcome such an immune challenge hemocytes differentiate into lamellocytes, which encapsulate and melanize the parasitoid egg. Hemocytes acquire the energy for this process by expressing JAK/STAT ligands upd2 and upd3, which activates JAK/STAT signaling in muscles and redirects carbohydrates away from muscles in favor of immune cells. METHODS: Immune response of Drosophila larvae was induced by parasitoid wasp infestation. Carbohydrate levels, larval locomotion and gene expression of key proteins were compared between control and infected animals. Efficacy of lamellocyte production and resistance to wasp infection was observed for RNAi and mutant animals. RESULTS: Absence of upd/JAK/STAT signaling leads to an impaired immune response and increased mortality. We demonstrate how JAK/STAT signaling in muscles leads to suppression of insulin signaling through activation of ImpL2, the inhibitor of Drosophila insulin like peptides. CONCLUSIONS: Our findings reveal cross-talk between immune cells and muscles mediates a metabolic shift, redirecting carbohydrates towards immune cells. We emphasize the crucial function of muscles during immune response and show the benefits of insulin resistance as an adaptive mechanism that is necessary for survival.


Assuntos
Proteínas de Drosophila , Resistência à Insulina , Vespas , Animais , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Drosophila/genética , Músculos , Vespas/metabolismo , Larva/metabolismo , Imunidade , Carboidratos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo
2.
Pest Manag Sci ; 80(3): 1219-1227, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37899674

RESUMO

BACKGROUND: The ectoparasitic wasp Habrobracon hebetor (Hymenoptera, Braconidae) can parasitize various species of lepidopteran pests. To maximize its potential for biological control, it is necessary to investigate its gene function through genome engineering. RESULTS: To test the effectiveness of genome engineering system in H. hebetor, we injected the mixture of clustered regularly interspaced short palindromic repeats (CRISPR) -associated (Cas) 9 protein and single guide RNA(s) targeting gene white into embryos. The resulting mutants display a phenotype of eye pigment loss. The phenotype was caused by small indel and is heritable. Then, we compared some biological parameters between wildtype and mutant, and found there were no significant differences in other parameters except for the offspring female rate and adult longevity. In addition, cocoons could be used to extract genomic DNA for genotype during the gene editing process without causing unnecessary harm to H. hebetor. CONCLUSION: Our results demonstrate that the CRISPR/Cas9 system can be used for H. hebetor genome editing and it does not adversely affect biological parameters of the parasitoid wasps. We also provide a feasible non-invasive genotype detection method using genomic DNA extracted from cocoons. Our study introduces a novel tool and method for studying gene function in H. hebetor, and may contribute to better application of H. hebetor in biocontrol. © 2023 Society of Chemical Industry.


Assuntos
Vespas , Animais , Feminino , Vespas/metabolismo , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Mutagênese , DNA
3.
J Immunol Methods ; 522: 113557, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37689389

RESUMO

Polybia paulista is a neotropical social wasp related to severe accidents and allergic reactions cases, including anaphylaxis, in southeastern Brazil. Antigen 5 (Poly p 5) is a major allergenic protein from its venom with potential use for component-resolved diagnostic. Therefore, the previous characterization of the immune response profile triggered by Poly p 5 should be evaluated. Recombinant Poly p 5 (rPoly p 5) was used to sensitize BALB/c mice with six weekly intradermal doses, and the specific antibody production and the functional profile of CD4+ T cells were assessed. rPoly p 5 induced the production of specific immunoglobulins (sIg) sIgE, sIgG1 and sIgG2a, which could recognize natural Poly p 5 presented in the venom of four different wasp species. rPoly p 5 stimulated in vitro the CD4+ T cells from immunized mice, which showed a significant proliferative response. These antigen-specific CD4+T cells produced IFN-γ and IL-17A cytokines and increased ROR-γT transcription factor expression. No differences between the control group and sensitized mice were found in IL-4 production and GATA-3 and T-bet expression. Interestingly, increased CD25+FoxP3+ regulatory T cells (Tregs) frequency was observed in the splenocyte cell cultures from rPoly p 5 immunized mice after the in vitro stimulation with both P. paulista venom extract and rPoly p 5. Here we showed that rPoly p 5 induces antigen-specific antibodies capable of recognizing Antigen 5 in the venom of four wasp species and modulates antigen-specific CD4+ T cells to IFN-γ production response associated with a Th17 profile in sensitized mice. These findings emphasize the potential use of rPoly p 5 as an essential source of a major wasp allergen with significant immunological properties.


Assuntos
Anafilaxia , Vespas , Animais , Camundongos , Vespas/metabolismo , Venenos de Vespas/metabolismo , Formação de Anticorpos , Alérgenos , Linfócitos T CD4-Positivos
4.
Arch Insect Biochem Physiol ; 114(4): e22053, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37695720

RESUMO

Infection of intestinal tissues with Wolbachia has been found in Habrobracon hebetor. There are not many studies on the relationship between Habrobracon and Wolbachia, and they focus predominantly on the sex index of an infected parasitoid, its fertility, and behavior. The actual role of Wolbachia in the biology of Habrobracon is not yet clear. The method of complete eradication of Wolbachia in the parasitoid was developed here, and effects of the endosymbiont on the host's digestive metabolism were compared between two lines of the parasitoid (Wolbachia-positive and Wolbachia-negative). In the gut of Wolbachia+ larvae, lipases' activity was higher almost twofold, and activities of acid proteases, esterases, and trehalase were 1.5-fold greater than those in the Wolbachia- line. Analyses of larval homogenates revealed that Wolbachia+ larvae accumulate significantly more lipids and have a lower amount of pyruvate as compared to Wolbachia- larvae. The presented results indicate significant effects of the intracellular symbiotic bacterium Wolbachia on the metabolism of H. hebetor larvae and on the activity of its digestive enzymes.


Assuntos
Himenópteros , Mariposas , Vespas , Wolbachia , Animais , Larva/metabolismo , Vespas/metabolismo , Rickettsiales , Mariposas/metabolismo
5.
Curr Biol ; 33(15): R799-R800, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37552942

RESUMO

In the 1880s, Henri Fabre was captivated by the "special art of eating", whereby a parasitoid wasp larva fed selectively on host internal organs, avoiding the heart (dorsal vessel) and tracheal system (respiratory system) to preserve life. In Fabre's words: "The ruling feature in this scientific method of eating, which proceeds from parts less to the parts more necessary to preserve a remnant of life, is none the less obvious"1. Subsequent investigators have reported the same for many parasitoid wasps2,3, including for the emerald jewel wasp (Ampulex compressa)4. Here it is reported that larval jewel wasps destroy the dorsal vessel and tracheae (respiratory system) in the thorax of their cockroach host (Periplaneta americana) at their earliest opportunity. Moreover, the broken tracheae release air into the host, which the larval jewel wasp inspires. An increase in larval chewing rate, cotemporaneous with the sudden release of air from the host's broken tracheae, suggests the larva taps into the host respiratory system to support its metabolism while rapidly consuming the host. VIDEO ABSTRACT.


Assuntos
Baratas , Vespas , Animais , Vespas/metabolismo , Larva/metabolismo , Venenos de Vespas , Interações Hospedeiro-Parasita , Sistema Respiratório , Tórax
6.
J Ethnopharmacol ; 317: 116700, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315652

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis (RA) is a chronic inflammatory disease that is related to the aberrant proliferation of fibroblast-like synoviocytes (FLS). Wasp venom (WV, Vespa magnifica, Smith), an insect secretion, has been used to treat RA in Chinese Jingpo national minority's ancient prescription. However, the potential mechanisms haven't been clarified. AIM OF THE STUDY: The purposes of this paper were two-fold. First, to investigate which was the best anti-RA effective part of WV-I (molecular weight less than 3 kDa), WV-II (molecular weight 3-10 kDa) and WV-III (molecular weight more than 10 kDa) that were separated from WV. Second, to explore the underlying molecular mechanism of WV and WV-II that was best effective part in RA. MATERIALS AND METHODS: The wasps were electrically stimulated and the secretions were collected. WV-I, WV-II and WV-III were acquired by ultracentrifuge method according to molecular weight. Next, WV, WV-I, WV-II and WV-III were identified by HPLC. Functional annotation and pathway analysis of WV used to bioinformatics analysis. RNA-seq analyses were constructed to identify differentially expressed genes (DEGs). GO and KEGG pathway analyses were performed by Metascape database. STRING was used to analyze the PPI network from DEGs. Next, PPI network was visualized using Cytoscape that based on MCODE. The pivotal genes of PPI network and MCODE analysis were verified by qRT-PCR. Subsequently, MH7A cells were performed by MTT assay to evaluate the ability of inhibiting cell proliferation. Luciferase activity assay was conducted in HepG2/STAT1 or HepG2/STAT3 cells to assess STAT1/3 sensitivity of WV, WV-I, WV-II and WV-III. Additionally, interleukin (IL)-1ß and IL-6 expression levels were detected by ELISA kits. Intracellular thioredoxin reductase (TrxR) enzyme was evaluated by TrxR activity assay kit. ROS levels, lipid ROS levels and Mitochondrial membrane potential (MMP) were assessed by fluorescence probe. Cell apoptosis and MMP were measured by using flow cytometry. Furthermore, the key proteins of JAK/STAT signaling pathway, protein levels of TrxR and glutathione peroxidase 4 axis (GPX4) were examined by Western blotting assay. RESULTS: RNA-sequencing analysis of WV displayed be related to oxidation-reduction, inflammation and apoptosis. The data displayed that WV, WV-II and WV-III inhibited significantly cells proliferation in human MH7A cell line compared to WV-I treatment group, but WV-III had no significant suppressive effect on luciferase activity of STAT3 compared with IL-6-induced group. Combined with earlier reports that WV-III contained major allergens, we selected WV and WV-II further to study the mechanism of anti-RA. In addition, WV and WV-II decreased the level of IL-1ß and IL-6 in TNF-α-induced MH7A cells via inactivating of JAK/STAT signaling pathway. On the other hand, WV and WV-II down-regulated the TrxR activity to produce ROS and induce cell apoptosis. Furthermore, WV and WV-II could accumulate lipid ROS to induce GPX4-mediated ferroptosis. CONCLUSIONS: Taken together, the experimental results revealed that WV and WV-II were potential therapeutic agents for RA through modulating JAK/STAT signaling pathways, redox homeostasis and ferroptosis in MH7A cells. Of note, WV-II was an effective part and the predominant active monomer in WV-II will be further explored in the future.


Assuntos
Artrite Reumatoide , Ferroptose , Sinoviócitos , Vespas , Animais , Humanos , Venenos de Vespas/farmacologia , Venenos de Vespas/metabolismo , Venenos de Vespas/uso terapêutico , Interleucina-6/metabolismo , Vespas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proliferação de Células , Antioxidantes/farmacologia , Oxirredução , Fibroblastos , Luciferases , Lipídeos/farmacologia , Células Cultivadas
7.
Toxins (Basel) ; 15(5)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37235365

RESUMO

Wasp stings have become an increasingly serious public health problem because of their high incidence and mortality rates in various countries and regions. Mastoparan family peptides are the most abundant natural peptides in hornet venoms and solitary wasp venom. However, there is a lack of systematic and comprehensive studies on mastoparan family peptides from wasp venoms. In our study, for the first time, we evaluated the molecular diversity of 55 wasp mastoparan family peptides from wasp venoms and divided them into four major subfamilies. Then, we established a wasp peptide library containing all 55 known mastoparan family peptides by chemical synthesis and C-terminal amidation modification, and we systematically evaluated their degranulation activities in two mast cell lines, namely the RBL-2H3 and P815 cell lines. The results showed that among the 55 mastoparans, 35 mastoparans could significantly induce mast cell degranulation, 7 mastoparans had modest mast cell degranulation activity, and 13 mastoparans had little mast cell degranulation activity, suggesting functional variation in mastoparan family peptides from wasp venoms. Structure-function relationship studies found that the composition of amino acids in the hydrophobic face and amidation in the C-terminal region are critical for the degranulation activity of mastoparan family peptides from wasp venoms. Our research will lay a theoretical foundation for studying the mechanism underlying the degranulation activity of wasp mastoparans and provide new evidence to support the molecular design and molecular optimization of natural mastoparan peptides from wasp venoms in the future.


Assuntos
Mordeduras e Picadas de Insetos , Vespas , Animais , Humanos , Venenos de Vespas/química , Vespas/metabolismo , Peptídeos/química
8.
Proc Natl Acad Sci U S A ; 120(16): e2218334120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036995

RESUMO

Toxin cargo genes are often horizontally transferred by phages between bacterial species and are known to play an important role in the evolution of bacterial pathogenesis. Here, we show how these same genes have been horizontally transferred from phage or bacteria to animals and have resulted in novel adaptations. We discovered that two widespread bacterial genes encoding toxins of animal cells, cytolethal distending toxin subunit B (cdtB) and apoptosis-inducing protein of 56 kDa (aip56), were captured by insect genomes through horizontal gene transfer from bacteria or phages. To study the function of these genes in insects, we focused on Drosophila ananassae as a model. In the D. ananassae subgroup species, cdtB and aip56 are present as singular (cdtB) or fused copies (cdtB::aip56) on the second chromosome. We found that cdtB and aip56 genes and encoded proteins were expressed by immune cells, some proteins were localized to the wasp embryo's serosa, and their expression increased following parasitoid wasp infection. Species of the ananassae subgroup are highly resistant to parasitoid wasps, and we observed that D. ananassae lines carrying null mutations in cdtB and aip56 toxin genes were more susceptible to parasitoids than the wild type. We conclude that toxin cargo genes were captured by these insects millions of years ago and integrated as novel modules into their innate immune system. These modules now represent components of a heretofore undescribed defense response and are important for resistance to parasitoid wasps. Phage or bacterially derived eukaryotic toxin genes serve as macromutations that can spur the instantaneous evolution of novelty in animals.


Assuntos
Toxinas Bacterianas , Vespas , Animais , Domesticação , Toxinas Bacterianas/metabolismo , Drosophila/genética , Drosophila/metabolismo , Transferência Genética Horizontal , Vespas/metabolismo , Imunidade Inata/genética
9.
Sci Data ; 10(1): 159, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949061

RESUMO

The ectoparasitoid wasp Theocolax elegans is a cosmopolitan and generalist pteromalid parasitoid of several major storage insect pests, and can effectively suppress a host population in warehouses. However, little molecular information about this wasp is currently available. In this study, we assembled the genome of T. elegans using PacBio long-read sequencing, Illumina sequencing, and Hi-C methods. The genome assembly is 662.73 Mb in length with contig and scaffold N50 values of 1.15 Mb and 88.8 Mb, respectively. The genome contains 56.4% repeat sequences and 23,212 protein-coding genes were annotated. Phylogenomic analyses revealed that T. elegans diverged from the lineage leading to subfamily Pteromalinae (Nasonia vitripennis and Pteromalus puparum) approximately 110.5 million years ago. We identified 130 significantly expanded gene families, 34 contracted families, 248 fast-evolving genes, and 365 positively selected genes in T. elegans. Additionally, 260 olfactory receptors and 285 venom proteins were identified. This genome assembly provides valuable genetic bases for future investigations on evolution, molecular biology and application of T. elegans.


Assuntos
Genoma de Inseto , Vespas , Animais , Cromossomos , Filogenia , Sequências Repetitivas de Ácido Nucleico , Vespas/genética , Vespas/metabolismo
10.
Arch Insect Biochem Physiol ; 112(2): e21970, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36200410

RESUMO

Microplitis bicoloratus parasitism can induce apoptosis of hemocytes in the M. bicolortus host, Spodoptera litura. However, it is unclear how M. bicolortus parasitism regulates host signaling pathways to induce apoptosis. Expression of cyclophilin D (CypD) and p53 was significantly upregulated in S. litura hemocytes at 6 days postparasitization. In the parasitized hemocytes, there was mitochondrial membrane potential (△Ψm ) loss, cytochrome c (Cyt C) release from mitochondria, and caspase-3 activation. These occurred while hemocytes were undergoing upregulation of CypD and p53. Parasitism also promoted the interaction between CypD and p53. CypD silencing could rescue the apoptotic phenotypes induced by parasitism, but had no effect on apoptosis in unparasitized S. litura. These findings suggest that the CypD-p53 pathway may be an important component of the parasitism-induced immunosuppressive response and establish a basis for further studies of parasitoid/host interactions.


Assuntos
Polydnaviridae , Vespas , Animais , Spodoptera/metabolismo , Vespas/metabolismo , Larva/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Hemócitos/metabolismo , Polydnaviridae/metabolismo , Apoptose/fisiologia
11.
Insect Biochem Mol Biol ; 152: 103895, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36538995

RESUMO

Endoparasitoid wasps inject venom proteins into the hemocoel of host insects to ensure survival, growth, and development of their progenies by blocking host immunity. We previously identified ten serine protease inhibitors of the serpin superfamily in venom of the endoparasitoid wasp, Microplitis mediator, but it is unclear how these inhibitors may interact with host immune serine proteases. In this study, we investigated the functions of two serpins, MmvSPN-1 and MmvSPN-2, in the regulation of humoral immune responses in two hosts, the oriental armyworm Pseudaletia separate and the cotton bollworm Helicoverpa armigera, by dsRNA knockdown and biochemical assays using recombinant proteins. Knockdown of the two serpins resulted in increases in prophenoloxidase (PPO) activation and antimicrobial peptide (AMP) production in the hosts. After injection into the host hemocoel, the recombinant serpins inhibited PPO activation and AMP transcription. Mass spectrometry analysis of the pull-downs and in vitro reconstitution experiments revealed that HacSP29, a clip-domain serine protease in H. armigera, is the target of these two serpins. Therefore, these two inhibitors in the wasp venom may protect eggs from attacks by melanization and AMPs in the host insects.


Assuntos
Mariposas , Serpinas , Vespas , Animais , Vespas/metabolismo , Serpinas/genética , Serpinas/metabolismo , Serina Endopeptidases , Mariposas/genética , Mariposas/metabolismo , Venenos de Vespas/metabolismo , Serina Proteases/genética , Serina Proteases/metabolismo , Peptídeos Antimicrobianos , Proteínas de Insetos/metabolismo
12.
J Adv Res ; 43: 1-12, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36585100

RESUMO

INTRODUCTION: The parasitoid wasp Microplitis mediator is an important natural enemy of the turnip moth Agrotis segetum and other Noctuidae pests. In our field observation, it was fortuitously discovered that sex pheromone traps used for A. segetum also attract female wasps, verified by a simulated field condition dual-choice laboratory assay. Therefore, it was hypothesized that olfactory recognition could be crucial in this process. In this regard, a female-biased odorant receptor of the wasp, MmedOR49, attracted our attention. OBJECTIVES: To unravel the significance of the female-biased MmedOR49 regulating host pheromone recognition. METHODS: Expression analysis (fluorescence in situ hybridization; quantitative realtime PCR), in vitro (two-electrode voltage-clamp recordings) and in vivo (RNAi combined with behavioral assessments) functional studies, and bioinformatics (structural modeling and molecular docking) were carried out to investigate the characteristics of MmedOR49. RESULTS: MmedOR49 expression was detected in the antennae of females by FISH. Quantification indicated that the expression level of MmedOR49 increased significantly after adult emergence. In vitro functional study revealed that MmedOR49 was specifically tuned to cis-5-decenyl acetate (Z5-10:Ac), the major sex pheromone component of A. segetum. Molecular docking showed that Z5-10:Ac strongly bound to the key amino acid residues His 80, Ile 81, and Arg 84 of MmedOR49 through hydrogen bonding. Behavioral assays indicated that female wasps were significantly attracted by Z5-10:Ac in a three-cage olfactometer. RNAi targeting further confirmed that MmedOR49 was necessary to recognize Z5-10:Ac, as female wasps lost their original behavioral responses to Z5-10:Ac after down-regulation of the MmedOR49 transcript. CONCLUSION: Although M. mediator is a larval endoparasitoid, female wasps have a behavioral preference for a sex pheromone component of lepidopteran hosts. In this behavior, for female M. mediator, MmedOR49 plays an important role in guiding the habitat of host insects. These data provide a potential target for enhancing natural enemy utilization and pest control.


Assuntos
Mariposas , Receptores Odorantes , Atrativos Sexuais , Vespas , Feminino , Animais , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Atrativos Sexuais/metabolismo , Hibridização in Situ Fluorescente , Simulação de Acoplamento Molecular , Vespas/genética , Vespas/metabolismo , Mariposas/genética , Mariposas/metabolismo
13.
Insect Biochem Mol Biol ; 144: 103758, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276333

RESUMO

Most temperate multivoltine insects enter diapause, a hormonally controlled developmental suspension, in response to seasonal photoperiodic and/or thermal cues. Some insect species exhibit maternal regulation of diapause in which developmental trajectories of the offspring are determined by mothers in response to environmental cues that the mother received. Although maternally regulated diapause is common among insects, the maternal endocrinological mechanisms are largely veiled. To approach this issue, we used the jewel wasp Nasonia vitripennis, which produces non-diapause-destined offspring under long days and diapause-destined offspring under short days or low temperatures. Comparative transcriptomics of these wasps revealed possible involvement of the juvenile hormone (JH) biosynthetic cascade in maternal diapause regulation. The expression of juvenile hormone acid O-methyltransferase (jhamt) was typically downregulated in short-day wasps, and this was reflected by a reduction in haemolymph JH concentrations. RNAi targeted at jhamt reduced haemolymph JH concentration and induced wasps to produce diapause-destined offspring even under long days. In addition, topical application of JH suppressed the production of diapause-destined offspring under short days or low temperatures. These results indicate that diapause in N. vitripennis is determined by maternal jhamt expression and haemolymph JH concentration in response to day length. We therefore report a novel role for JH in insect seasonality.


Assuntos
Diapausa de Inseto , Diapausa , Vespas , Animais , Hormônios Juvenis/metabolismo , Fotoperíodo , Vespas/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(12): e2119109119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35286208

RESUMO

Inflammatory response in Drosophila to sterile (axenic) injury in embryos and adults has received some attention in recent years, and most concentrate on the events at the injury site. Here we focus on the effect sterile injury has on the hematopoietic organ, the lymph gland, and the circulating blood cells in the larva, the developmental stage at which major events of hematopoiesis are evident. In mammals, injury activates Toll-like receptor/NF-κB signaling in macrophages, which then express and secrete secondary, proinflammatory cytokines. In Drosophila larvae, distal puncture injury of the body wall epidermis causes a rapid activation of Toll and Jun kinase (JNK) signaling throughout the hematopoietic system and the differentiation of a unique blood cell type, the lamellocyte. Furthermore, we find that Toll and JNK signaling are coupled in their activation. Secondary to this Toll/JNK response, a cytokine, Upd3, is induced as a Toll pathway transcriptional target, which then promotes JAK/STAT signaling within the blood cells. Toll and JAK/STAT signaling are required for the emergence of the injury-induced lamellocytes. This is akin to the derivation of specialized macrophages in mammalian systems. Upstream, at the injury site, a Duox- and peroxide-dependent signal causes the activation of the proteases Grass and SPE, needed for the activation of the Toll-ligand Spz, but microbial sensors or the proteases most closely associated with them during septic injury are not involved in the axenic inflammatory response.


Assuntos
Proteínas de Drosophila , Vespas , Ferimentos e Lesões , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Hematopoese , Inflamação , Fenótipo , Transdução de Sinais , Vespas/metabolismo
15.
J Exp Zool B Mol Dev Evol ; 338(7): 421-429, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34995007

RESUMO

Linoleic acid is the material for biosynthesis of sex attracting and blocking (postmating) pheromones in Nasonia vitripennis, it is synthesized from oleic acid by a male-biased fatty acid desaturase (SCD5a). In this study, we developed a specific antibody and further characterized the expression patterns of SCD5a in males at different mating stages by western blot. SCD5a was mainly expressed in male heads rather than in abdomens. Along with the aging process (from Day 1 to Day 3), SCD5a increased significantly. Compared with virgin males, mated males showed higher levels of SCD5a. Likewise, abdomen dipping frequency, during which males release attracting pheromone, increased with age and mating. Moreover, real-time quantitative PCR revealed that genes responsible for the first three steps of attracting pheromone biosynthesis were more highly expressed in head than in abdomen, but the final gene for transformation of attracting pheromone was more highly expressed in abdomen than in head. These results suggest that linoleic acid for biosynthesis of attracting pheromones may also originate from the head rather than only synthesized at the rectal vesicles.


Assuntos
Atrativos Sexuais , Vespas , Animais , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácido Linoleico/metabolismo , Masculino , Ácido Oleico/metabolismo , Feromônios/metabolismo , Vespas/genética , Vespas/metabolismo
16.
Molecules ; 26(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833861

RESUMO

Vespa velutina has been rapidly expanding throughout Galicia since 2012. It is causing human health risks and well-known losses in the beekeeping sector. Control methods are scarce, unspecific, and ineffective. Semiochemicals are insect-derived chemicals that play a role in communication and they could be used an integrated pest management tool alternative to conventional pesticides. A previous determination of the organic chemical profile should be the first step in the study of these semiochemicals. HS-SPME in living individuals and the sting apparatus extraction followed by GC-MS spectrometry were combined to extract a possible profile of these compounds in 43 hornets from Galicia. The identified compounds were hydrocarbons, ketones, terpenes, and fatty acid, and fatty acid esters. Nonanal aldehyde appeared in important concentrations in living individuals. While pentadecane, 8-hexyl- and ethyl oleate were mainly extracted from the venom apparatus. Ketones 2-nonanone, 2-undecanone and 7-nonen-2-one, 4,8-dimethyl- were identified by both procedures, as was 1,7-Nonadiene, 4,8-dimethyl-. Some compounds were detected for the first time in V. velutina such as naphthalene, 1,6-dimethyl-4-(1-methylethyl). The chemical profile by caste was also characterized.


Assuntos
Feromônios/análise , Feromônios/metabolismo , Venenos de Vespas/análise , Venenos de Vespas/metabolismo , Vespas/metabolismo , Animais , Cromatografia Gasosa-Espectrometria de Massas
17.
Nat Commun ; 12(1): 5489, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531391

RESUMO

Intraspecific competition is a major force in mediating population dynamics, fuelling adaptation, and potentially leading to evolutionary diversification. Among the evolutionary arms races between parasites, one of the most fundamental and intriguing behavioural adaptations and counter-adaptations are superparasitism and superparasitism avoidance. However, the underlying mechanisms and ecological contexts of these phenomena remain underexplored. Here, we apply the Drosophila parasite Leptopilina boulardi as a study system and find that this solitary endoparasitic wasp provokes a host escape response for superparasitism avoidance. We combine multi-omics and in vivo functional studies to characterize a small set of RhoGAP domain-containing genes that mediate the parasite's manipulation of host escape behaviour by inducing reactive oxygen species in the host central nervous system. We further uncover an evolutionary scenario in which neofunctionalization and specialization gave rise to the novel role of RhoGAP domain in avoiding superparasitism, with an ancestral origin prior to the divergence between Leptopilina specialist and generalist species. Our study suggests that superparasitism avoidance is adaptive for a parasite and adds to our understanding of how the molecular manipulation of host behaviour has evolved in this system.


Assuntos
Drosophila melanogaster/parasitologia , Proteínas Ativadoras de GTPase/genética , Interações Hospedeiro-Parasita/genética , Proteínas de Insetos/genética , Vespas/genética , Vespas/patogenicidade , Animais , Aprendizagem da Esquiva , Comportamento Animal , Coevolução Biológica , Sistema Nervoso Central/parasitologia , Ingestão de Alimentos , Feminino , Proteínas Ativadoras de GTPase/classificação , Proteínas Ativadoras de GTPase/metabolismo , Expressão Gênica , Proteínas de Insetos/classificação , Proteínas de Insetos/metabolismo , Larva/parasitologia , Masculino , Família Multigênica , Espécies Reativas de Oxigênio/metabolismo , Vespas/metabolismo
18.
Toxins (Basel) ; 13(8)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34437434

RESUMO

The wood-boring woodwasp Sirex nitobei is a native pest in Asia, infecting and weakening the host trees in numerous ecological and commercial coniferous forest plantations. In China, hosts of S. nitobei are diverse, so the pest has spread to several provinces of China, resulting in considerable economic and ecological damage. During female oviposition, S. nitobei venom along with arthrospores of the symbiotic fungus Amylostereum areolatum or A. chaetica is injected into host trees, and the combination of these two biological factors causes the death of xylem host trees. The presence of venom alone causes only the yellowing and wilting of needles. In this study, we constructed the venom gland transcriptome of S. nitobei for the first time and a total of 15,036 unigenes were acquired. From the unigenes, 11,560 ORFs were identified and 537 encoding protein sequences with signal peptides at the N-terminus. Then, we used the venomics approach to characterize the venom composition of female S. nitobei and predicted 1095 proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. We focused on seven proteins that were both highly expressed in the venom gland transcriptome and predicted in the crude venom proteome. These seven proteins are laccase-2, laccase-3, a protein belonging to the Kazal family, chitooligosaccharidolytic ß-N-acetylglucosaminidase, beta-galactosidase, icarapin-like protein, and waprin-Thr1-like protein. Using quantitative real-time PCR (qRT-PCR), we also proved that the genes related to these seven proteins are specifically expressed in the venom glands. Finally, we revealed the functional role of S. nitobei venom in the physiological response of host trees. It can not only promote the colonization of symbiotic fungus but contribute to the development of eggs and larvae. This study provides a deeper understanding of the molecular mechanism of the woodwasp-pine interaction.


Assuntos
Glândulas Exócrinas/metabolismo , Proteínas de Insetos , Venenos de Vespas , Vespas , Animais , Basidiomycota , Feminino , Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Pinus/microbiologia , Doenças das Plantas , Proteoma/análise , Proteoma/genética , Transcriptoma , Venenos de Vespas/química , Venenos de Vespas/genética , Vespas/genética , Vespas/metabolismo
19.
Molecules ; 26(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072744

RESUMO

The use of insects as a feasible and useful natural product resource is a novel and promising option in alternative medicine. Several components from insects and their larvae have been found to inhibit molecular pathways in different stages of cancer. This study aimed to analyze the effect of aqueous and alcoholic extracts of Vespa orientalis larvae on breast cancer MCF7 cells and investigate the underlying mechanisms. Our results showed that individual treatment with 5% aqueous or alcoholic larval extract inhibited MCF7 proliferation but had no cytotoxic effect on normal Vero cells. The anticancer effect was mediated through (1) induction of apoptosis, as indicated by increased expression of apoptotic genes (Bax, caspase3, and p53) and decreased expression of the anti-apoptotic gene Bcl2; (2) suppression of intracellular reactive oxygen species; (3) elevation of antioxidant enzymes (CAT, SOD, and GPx) and upregulation of the antioxidant regulator Nrf2 and its downstream target HO-1; (4) inhibition of migration as revealed by in vitro wound healing assay and downregulation of the migration-related gene MMP9 and upregulation of the anti-migratory gene TIMP1; and (5) downregulation of inflammation-related genes (NFκB and IL8). The aqueous extract exhibited the best anticancer effect with higher antioxidant activities but lower anti-inflammatory properties than the alcoholic extract. HPLC analysis revealed the presence of several flavonoids and phenolic compounds with highest concentrations for resveratrol and naringenin in aqueous extract and rosmarinic acid in alcoholic extract. This is the first report to explain the intracellular pathway by which flavonoids and phenolic compounds-rich extracts of Vespa orientalis larvae could induce MCF7 cell viability loss through the initiation of apoptosis, activation of antioxidants, and inhibition of migration and inflammation. Therefore, these extracts could be used as adjuvants for anticancer drugs and as antioxidant and anti-inflammatory agents.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Larva/metabolismo , Vespas/metabolismo , Animais , Antineoplásicos/farmacologia , Antioxidantes/química , Compostos de Bifenilo/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cinamatos/farmacologia , Depsídeos/farmacologia , Flavanonas/farmacologia , Sequestradores de Radicais Livres , Homeostase , Humanos , Inflamação , Células MCF-7 , Oxirredução , Picratos/química , Resveratrol/farmacologia , Cicatrização
20.
PLoS One ; 16(6): e0252765, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34138896

RESUMO

The communication and reproduction of insects are driven by chemical sensing. During this process, chemical compounds are transported across the sensillum lymph to the sensory neurons assisted by different types of soluble binding proteins: odorant-binding proteins (OBPs); chemosensory proteins (CSPs); some members of ML-family proteins (MD-2 (myeloid differentiation factor-2)-related Lipid-recognition), also known as NPC2-like proteins. Potential transcripts involved in chemosensing were identified by an in silico analysis of whole-body female and male transcriptomes of the parasitic wasp Diachasmimorpha longicaudata. This analysis facilitated the characterization of fourteen OBPs (all belonging to the Classic type), seven CSPs (and two possible isoforms), and four NPC2-like proteins. A differential expression analysis by qPCR showed that eleven of these proteins (CSPs 2 and 8, OBPs 2, 3, 4, 5, 6, 9, 10, and 11, and NPC2b) were over-expressed in female antenna and two (CSP 1 and OBP 12) in the body without antennae. Foraging behavior trials (linked to RNA interference) suggest that OBPs 9, 10, and 11 are potentially involved in the female orientation to chemical cues associated with the host. OBP 12 seems to be related to physiological processes of female longevity regulation. In addition, transcriptional silencing of CSP 3 showed that this protein is potentially associated with the regulation of foraging behavior. This study supports the hypothesis that soluble binding proteins are potentially linked to fundamental physiological processes and behaviors in D. longicaudata. The results obtained here contribute useful information to increase the parasitoid performance as a biological control agent of fruit fly pest species.


Assuntos
Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Vespas/metabolismo , Animais , Comportamento Alimentar , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/genética , Masculino , Receptores Odorantes/química , Receptores Odorantes/genética , Transcriptoma , Vespas/genética , Vespas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...